
5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 1/14

fireeye.com

Targeted Attacks against
Banks in the Middle East
« Threat Research Blog

May 22, 2016 • 5 min read • original

Introduction

In the first week of May 2016, FireEye’s DTI identified
a wave of emails containing malicious attachments
being sent to multiple banks in the Middle East region.
The threat actors appear to be performing initial
reconnaissance against would-be targets, and the
attacks caught our attention since they were using
unique scripts not commonly seen in crimeware
campaigns.

In this blog we discuss in detail the tools, tactics,
techniques and procedures (TTPs) used in these
targeted attacks.

https://www.fireeye.com/blog/threat-research/2016/05/targeted_attacksaga.html
https://www.fireeye.com/blog/threat-research/2016/05/targeted_attacksaga.html
https://www.fireeye.com/products/dynamic-threat-intelligence/dti-ati-atiplus-datasheet.html

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 2/14

Delivery Method

The attackers sent multiple emails containing macro-
enabled XLS files to employees working in the banking
sector in the Middle East. The themes of the messages
used in the attacks are related to IT Infrastructure
such as a log of Server Status Report or a list of Cisco
Iron Port Appliance details. In one case, the content of
the email appeared to be a legitimate email
conversation between several employees, even
containing contact details of employees from several
banks. This email was then forwarded to several
people, with the malicious Excel file attached.

Macro Details
The macro first calls an Init() function (shown in
Figure 1) that performs the following malicious
activities:

1. Extracts base64-encoded content from the cells
within a worksheet titled "Incompatible".

2. Checks for the presence of a file at the path
%PUBLIC%\Libraries\ update.vbs. If the file is not
present, the macro creates three different
directories under %PUBLIC%\Libraries, namely
up, dn, and tp.

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 3/14

3. The extracted content from step one is decoded
using PowerShell and dropped into two different
files: %PUBLIC%\Libraries\update.vbs and
%PUBLIC%\Libraries\dns.ps1

4. The macro then creates a scheduled task with
name: GoogleUpdateTaskMachineUI, which
executes update.vbs every three minutes.

Note: Due to the use of a hardcoded environment
variable %PUBLIC% in the macro code, the macro will
only run successfully on Windows Vista and
subsequent versions of the operating system.

Figure 1: Macro Init() subroutine

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 4/14

Run-time Unhiding of Content

One of the interesting techniques we observed in this
attack was the display of additional content after the
macro executed successfully. This was done for the
purpose of social engineering – specifically, to
convince the victim that enabling the macro did in fact
result in the “unhiding” of additional spreadsheet
data.

Office documents containing malicious macros are
commonly used in crimeware campaigns. Because
default Office settings typically require user action in
order for macros to run, attackers may convince
victims to enable risky macro code by telling them that
the macro is required to view “protected content.”

In crimeware campaigns, we usually observe that no
additional content is displayed after enabling the
macros. However, in this case, attackers took the extra
step to actually hide and unhide worksheets when the
macro is enabled to allay any suspicion. A screenshot
of the worksheet before and after running the macro is
shown in Figure 2 and Figure 3, respectively.

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 5/14

Figure 2: Before unhiding of content

Figure 3: After unhiding of content

In the following code section, we can see that the
subroutine ShowHideSheets() is called after the Init()
subroutine executes completely:

Private Sub Workbook_Open()
 Call Init
 Call ShowHideSheets
End Sub

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 6/14

The code of subroutine ShowHideSheets(), which
unhides the content after completion of malicious
activities, is shown in Figure 4.

Figure 4: Macro used to unhide content at runtime

First Stage Download

After the macro successfully creates the scheduled
task, the dropped VBScript, update.vbs (Figure 5), will
be launched every three minutes. This VBScript
performs the following operations:

1. Leverages PowerShell to download content from
the URI hxxp://go0gIe[.]com/sysupdate.aspx?
req=xxx\dwn&m=d and saves it in the directory
%PUBLIC%\Libraries\dn.

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 7/14

2. Uses PowerShell to download a BAT file from the
URI hxxp://go0gIe[.]com/sysupdate.aspx?
req=xxx\bat&m=d and saves it in the directory
%PUBLIC%\Libraries\dn.

3. Executes the BAT file and stores the results in a
file in the path %PUBLIC%\Libraries\up.

4. Uploads this file to the server by sending an HTTP
POST request to the URI
hxxp://go0gIe[.]com/sysupdate.aspx?
req=xxx\upl&m=u.

5. Finally, it executes the PowerShell script dns.ps1,
which is used for the purpose of data exfiltration
using DNS.

Figure 5: Content of update.vbs

During our analysis, the VBScript downloaded a
customized version of Mimikatz in the previously
mentioned step one. The customized version uses its

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 8/14

own default prompt string as well as its own console
title, as shown in Figure 6.

Figure 6: Custom version of Mimikatz used to extract
user password hashes

Similarly, the contents of the BAT file downloaded in
step two are shown in Figure 7:

whoami & hostname & ipconfig /all & net user
/domain 2>&1 & net group /domain 2>&1 & net group
"domain admins" /domain 2>&1 & net group
"Exchange Trusted Subsystem" /domain 2>&1 & net
accounts /domain 2>&1 & net user 2>&1 & net
localgroup administrators 2>&1 & netstat -an 2>&1 &
tasklist 2>&1 & sc query 2>&1 & systeminfo 2>&1 & reg

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 9/14

query
"HKEY_CURRENT_USER\Software\Microsoft\Terminal
Server Client\Default" 2>&1

Figure 7: Content of downloaded BAT script

This BAT file is used to collect important information
from the system, including the currently logged on
user, the hostname, network configuration data, user
and group accounts, local and domain administrator
accounts, running processes, and other data.

Data Exfiltration over DNS

Another interesting technique leveraged by this
malware was the use of DNS queries as a data
exfiltration channel. This was likely done because
DNS is required for normal network operations. The
DNS protocol is unlikely to be blocked (allowing free
communications out of the network) and its use is
unlikely to raise suspicion among network defenders.

The script dns.ps1, dropped by the macro, is used for
this purpose. In the following section, we describe its
functionality in detail.

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 10/14

1. The script requests an ID (through the DNS
protocol) from go0gIe[.]com. This ID will then be
saved into the PowerShell script.

2. Next, the script queries the C2 server for
additional instructions. If no further actions are
requested, the script exits and will be activated
again the next time update.vbs is called.

3. If an action is required, the DNS server replies
with an IP with the pattern 33.33.xx.yy. The script
then proceeds to create a file at
%PUBLIC%\Libraries\tp\chr(xx)chr(yy).bat. The
script then proceeds to make DNS requests to
fetch more data. Each DNS request results in the
C2 server returning an IP address. Each octet of
the IP address is interpreted as the decimal
representation of an ASCII character; for example,
the decimal number 99 is equivalent to the ASCII
character ‘c’. The characters represented by the
octets of the IP address are appended to the batch
file to construct a script. The C2 server signals the
end of the data stream by replying to a DNS query
with the IP address 35.35.35.35.

4. Once the file has been successfully transferred,
the BAT file will be run and its output saved as
%PUBLIC%\Libraries\tp\chr(xx)chr(yy).txt.

5. The text file containing the results of the BAT

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 11/14

script will then be uploaded to the DNS server by
embedding file data into part of the subdomain.
The format of the DNS query used is shown in
Table 1.

6. The BAT file and the text file will then be deleted.
The script then quits, to be invoked again upon
running the next scheduled task.

The DNS communication portion of the script is
shown in Figure 8, along with a table showing the
various subdomain formats being generated by the
script.

Figure 8: Code Snippet of dns.ps1

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 12/14

Format of subdomains used in DNS C2 protocol:

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 13/14

Subdomain
used to
request for
BotID, used
in step 2
above

[00][botid]00000[base36 random number]30

Subdomain
used while
performing
file
transfers
used in
step 3
above

[00]
[botid]00000[base36 random number]232A[hex_filename]
[i-counter]

Subdomain
used while
performing
file upload,
used in
step 5
above

[00][botid][cmdid][partid][base36 random number][48-
hex-char-of-file-content]

Table 1: C2 Protocol Format

Conclusion
Although this attack did not leverage any zero-days or
other advanced techniques, it was interesting to see
how attackers used different components to perform
reconnaissance activities on a specific target.

This attack also demonstrates that macro malware is
effective even today. Users can protect themselves
from such attacks by disabling Office macros in their

5/23/2016 Targeted Attacks against Banks in the Middle East « Threat Research Blog — www.fireeye.com

https://www.readability.com/articles/mtchcryk 14/14

settings and also by being more vigilant when enabling
macros (especially when prompted) in documents,
even if such documents are from seemingly trusted
sources.

Original URL:
https://www.fireeye.com/blog/threat-research/2016/05/targeted_attacksaga.html

